
TemporalDifferenceLearning

November 28, 2018

1 Temporal Difference Learning

Temporal difference (TD) learning represents the final basic solution method for solving the RL
problem. After completeing this notebook you should hopefully be able to see the relationships
between Dynamic Programming (DP), Monte Carlo (MC) and TD methods. In fact, more ad-
vanced methods for solving the RL problem combine these approaches in an attempt to get the
benefits of all three. At its core, TD learning is similar to DP methods in that it bootstraps infor-
mation (updates estimated values using other estimates) and it is also similar to MC methods in
that it can learn from sampled experience without a model of the environment.

In short, classic TD learning samples one step of the underlying MDP by selecting an action in a
given state and observing the outcome. The resulting state and reward is then used in combination
with existing value estimates to update the value estimate for the state or state-action pair. This
is possible due to the recursive definition of the Bellman equations, much as it was with dynamic
programming.

As with all the solution methods we have covered so far TD learning still fits under the umbrella
of Generalized Policy Iteration (GPI) and so we shall now use the GPI framework to outline TD
learning in more detail. As a side note DP, MC and TD predominantly differ in the way they tackle
the policy evaluation step of GPI.

1.1 Policy Evaluation

Recall from the notebook on MC methods that we evaluated the policy using a samples of the full
return Rt:

V π(s) = Eπ[Rt | st = s]

Qπ(s, a) = Eπ[Rt | st = s, at = a]

In the practical example we just recorded all the returns we experienced for a given state-action
pair and calcualted their average. However this can be computationally expensive as the number
of episodes increases. Another option is to incrementally calcualte the average return, without
explicitly storing all of the return values themselves. Let Ri denote the return from state s on

1

episode i and k denote the number of episodes previously experienced. Using this notation we
can incrementally calculate the new average return after episode k + 1 as follows:

V (s)k+1 =
1

k + 1

k+1∑
i=1

Ri

=
1

k + 1
(Rk+1 +

k∑
i=1

Ri)

=
1

k + 1
(Rk+1 + kV (s)k + V (s)k − V (s)k)

=
1

k + 1
(Rk+1 + (k + 1)V (s)k − V (s)k)

= V (s)k +
1

k + 1
[Rk+1 − V (s)k]

By re-arranging the formula in this way we now only need to keep a record of our current estimate
of V (s) and the number of times we have sampled a return from s (i.e. the value of k). We can
actually write the update rule in a much more general fashion, which you will find is pervasive
throughout the field of reinforcement learning:

NewEstimate← OldEstimate+ StepSize[Target−OldEstimate]

Where [Target − OldEstimate] is often called the error of our estimate. In effect we are just
moving our current estimate in the direction of our target value, which in the case of MC methods
is the newest sampled return Rk+1.

The above approach works well for calculating the average of a stationary distribution but with
RL we often deal with non-stationary distributions because our estimates are constantly changing
necause of changes in the policy. One way to overcome this is to calculate a moving average of our
target value e.g. the full return Rt in the case of MC methods. A common approach for calculating
a moving average of the return for MC methods is as follows:

V (st)← V (st) + α[Rt − V (st)]

Where α is a constant between 0 and 1. This equation increments our estimate of V (st) by a
small amount towards the target Rt after each episode. More concretely this operation calculates
an exponentially weighted average of Rt, with higher weightings for more recent values, which
allows it to deal with non-stationary values better. We can prove this as follows:

2

Vk = Vk−1 + α[Rk − Vk−1]
= αRk + (1− α)Vk−1
= αRk + (1− α)αRk−1 + (1− α)2Vk−2
= αRk + (1− α)αRk−1 + (1− α)2Rk−2 + ...+ (1− α)k−1R1 + (1− α)kV0

= (1− α)kV0 +
k∑
i=1

α(1− α)k−iRi

As you can see as the number of returns k increases, the weight for older returns decreases ex-
ponentially according to the exponent of (1 − α). It is important to go through this method of
calculating an incremental, exponentially weighted average because TD methods rely heavily on
them to update their estimates of the value function. In TD learning, not only are the returns
changing as the policy changes but because it relies on bootstrapping the other estimates are also
changing. It is therefore especially important that we use an update rule for TD learning that can
handle non-stationary distributions.

The above MC calculations assume that the full sample return Rt is our target value and we want
our value estimate to be an average of this target. In comparison, TD methods use rt+1+γVt(st+1)
as the target i.e. they just sample one step of the MDP to obtain rt+1 and st+1, and then use another
estimate Vt(st+1) to perform the update. The TD update rules for policy evaluation therefore
become:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

We can see that this is still calculating the expected return by re-arranging the following equation:

V π(s) = Eπ[Rt | st = s]

= Eπ[
∞∑
k=0

γkrt+k+1 | st = s]

= Eπ[rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s]

= Eπ[rt+1 + γV π(st+1) | st = s]

So we are sampling like in the MC case, but we are only sampling one step as opposed to all the
steps up to some terminal state. We can perform the update rule after just sampling one step of
the MDP because we use bootstrapping techniques like in DP. Recall from the first notebook that
the bellman equations are defined as:

3

V π(s) =
∑
a

π(s, a)
∑
s′

P ass′ [R
a
ss′ + γV π(s′)]

Qπ(s, a) =
∑
s′

P ass′ [R
a
ss′ + γ

∑
a′

π(s′, a′)Qπ(s′, a′)]

The bellman equations therefore form the basis of our update rule in TD learning, just as they did
in dynamic programming. The main difference however, is that we just sample one outcome and
calculate an estimated average / expectation because we don’t have access to the environments
dyanmics P ass′ and Rass′ . This is akin to performing a sample backup rather than a full backup as
in DP.

Hopefully you can see how TD learning combines the sampling of MC methods with the boot-
strapping of DP methods when it comes to policy evaluation. Below is some example pseudo
code from Reinforcement Learning: An Introduction by Sutton and Barto (1998) outlining the
basic steps for performing TD policy evaluation.

In [4]: from IPython.display import Image
Image(filename='TDPolicyEvaluation.png')

Out[4]:

In general there are several advantages to using TD policy evaluation over MC policy evalua-
tion. Firstly, the value update can be applied after every step of the MDP and so it can be applied
in an online fashion. You do not need to wait until the end of an episode to apply the update rule,
as is the case in MC methods. TD methods start learning straight away e.g. after the very first
action taken in the MDP. This is important if we want to start improving the policy quickly rather
than waiting for some far off terminal state before we apply what we have learnt. Importantly
this also means that TD methods can be used for continuing tasks where there are no terminal
states at all or when the episodes are extremely long and MC methods would have to wait a long

4

time to obtain a sample of the full return. Another key advantage of TD methods is that due to
their bootstrapping properties they reduce the high variance associated with MC methods. The
flip side of this is that they can suffer from high bias because they rely so heavily on other esti-
mates, which may themselves be misleading. Another disadvantage of bootstrapping using the
aforementioned TD method is that only the value of the previous state is backed up whereas in
MC all the states visited in a single episode are backed up at once. Simple one-step online TD
methods can therefore be fairly inefficient in propagating information back through the visited
states. In a future notebook we shall see how we can use methods that actually combine TD and
MC approaches to try and get the best of both worlds i.e. to produce low variance, low bias and
propogate information back over several states at once. Such methods rely on the fact that there is
actually a spectrum of backups between one-step backups (TD) and full-backups (MC) and so we
can perform a single backup that takes a weighted sum of all these different lengths of backup.

As a final note it is worth mentioning that constant α TD and MC policy evaluation don’t actually
converge to the same value function for all MDPs. To see this we can take another classic example
from Reinforcement Learning: An Introduction by Sutton and Barto (1998). Imagine you simu-
late experience in an unknown MDP and you get the following results (each result is a separate
episode), where A and B are different states:

States Rewards
A, B 0, 0

B 1
B 1
B 1
B 1
B 1
B 1
B 0

Now in policy evaluation we want to work out what the value of states A and B are i.e. V (A) and
V (B). The value of V (B) appears relatively straight forward because we obtained reward from
state B six times out of eight and so V (B) = 3

4 . Both MC and TD policy evaluation would agree
on this value for V (B), however they would disagree on the value for V (A). For example, MC
policy evaluation would state that the average return from state A is 0 (01 = 0) and so V (A) = 0. In
comparison TD policy evaluation would back up the value of state B, which in the undiscounted
case would converge to 3

4 and so V (A) = 3
4 . Which of these estimates do you think is more

accurate? In practice the MC estimate gives us a perfect fit of the sampled data. However, the
TD estimate would still be considered better because it makes use of the fact that the process is an
MDP with states that satisfy the Markov property. As long as the problem is truly an MDP the TD
estimate should give us less error on future data despite not being as good on the current data.
This is because TD policy evaluation utilises the Markov property and the Bellman equations in
its update rule and so it is better at capturing the underlying MDP. In fact TD policy evaluation
converges to the maximum likelihood solution for an MDP i.e. it finds the values that maximise the
probability of the observed data given the process is an MDP. In this case the maximum likelihood
solution would be as follows:

In [4]: Image(filename='MC_TD_MDP.png')

5

Out[4]:

1.2 Policy Improvement

As we saw with MC methods the policy improvement step will generally depend on whether we
are performing ‘on-policy’ or ‘off-policy’ control (see next section). In the ‘on-policy’ case it is
common to improve the policy in an ε − greedy fashion whereas in the ‘off-policy’ case we can
revert to the classic full greedy policy improvement.

1.3 Temporal Difference Control

As was the case with MC control methods, we will generally focus on control methods that use
state-action values (Qπ(s, a)) because they don’t require a model of the environment’s dynamics
in order to select the best action given the current value estimates.

1.3.1 SARSA (On-Policy)

The first TD control method we will explore is an ‘on-policy’ method called SARSA. This method
gets its name from the fact that it relies upon the tuple (st, at, rt+1, st+1, at+1). SARSA samples one
step of the environment and the resulting tuple is used to perform the TD update rule mentioned
previously:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

This corresponds to the policy evaluation step. The tuples are generated using a policy that is
ε − greedy with respect to our state-action value estimates (Qπ(s, a)). This ensures that all state-
action pairs will be picked infinitely often as the number of samples tends towards infinity. Since
SARSA is an ‘on-policy’ method the policy improvement step also improves the policy using an

6

ε − greedy approach. Hopefully you can see how because we are using an ε − greedy policy for
both picking actions and improving our policy, we end up with an on-policy method where both
policies are implicitly the same.

Pseudo code for the SARSA algorithm from Reinforcement Learning: An Introduction by Sutton
and Barto (1998) can be found below as well as the backup diagram.

In [2]: Image(filename='SARSA.png')

Out[2]:

In [3]: Image(filename='SARSABackup.png')

Out[3]:

7

1.3.2 Q-Learning (Off-Policy)

The other TD control method we shall cover in this notebook is an ‘off-policy’ method known as
Q-Learning. Q-Learning can be defined in just a single update rule that combines both one step of
policy evaluation and one step of policy improvement:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]

This combination of policy evaluation and policy improvement means that Q-learning directly
approximates the optimal value function Q∗ because it takes the max over actions in the successor
state st+1. Hopefully you can see the similarities to value iteration in DP where we used the
Bellman optimality equations to define our update rule. The Q-Learning update rule is applied
to experience generated from an ε − greedy policy to again ensure that all state-action pairs are
visited. As a result Q-Learning is defined as an ‘off-policy’ method because the policy we are
evaluating and improving is a greedy policy but the one we are following is an ε− greedy policy.

Pseudo code from Reinforcement Learning: An Introduction by Sutton and Barto (1998) and the
backup diagram for Q-Learning can be found below:

In [3]: Image(filename='QLearning.png')

Out[3]:

In [2]: Image(filename='QLearningBackup.png')

Out[2]:

8

2 Example - Racetrack (Sutton and Barto, 1998)

To demonstrate a TD control method in action let’s use Q-Learning to solve the racetrack MDP that
we saw in the previous MC notebook. Please refer back to the MC notebook to remind yourself
of how we formulated this problem as an MDP. Note how in a given amount of time we can
run more iterations of the Q-Learning method than the ε-greedy on-policy MC control method
from the previous notebook because Q-Learning doesn’t need to store all the returns in a large
dictionary. We could of course turn the previous MC method into an incremental one by using
a fixed step size in order to reduce the memory demand. Feel free to play with this code and
see which method produces the best results, you could also implement SARSA and see how that
compares.

In [13]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib as mpl

mpl.rcParams['figure.dpi'] = 100

class Episode(object):

def __init__(self):
self.states = []
self.actions = []
self.rewards = []

9

class Racetrack(object):

def __init__(self):

self.alpha = .1
self.gamma = .99

self.width = 25
self.height = 65

self.start_start = 7
self.start_length = 10

self.actions = {0: (-1, -1),
1: (-1, 0),
2: (-1, 1),
3: (0, -1),
4: (0, 0),
5: (0, 1),
6: (1, -1),
7: (1, 0),
8: (1, 1)}

self.num_actions = self.actions.__len__()

self.state_action_values = np.zeros((self.height, self.width,
self.num_actions))

self.step_reward = -1
self.off_track_reward = -5
self.max_velocity = 5
self.epsilon = .1
self.num_episodes = 1000000
self.results_interval = 62500

self.ConstructRacetrack()
self.PlotRacetrack(self.racetrack)

def ConstructRacetrack(self):

self.racetrack = np.ones((self.height, self.width))

Input 2s for the start and 3s for the finish line
self.racetrack[self.height - 1, self.start_start:(

self.start_start + self.start_length)] = 2
self.racetrack[:self.start_length, self.width - 1] = 3

Input 0s for the track boundaries

10

for row in range(self.height):
for col in range(self.width):

if ((row + col < 7) or
(row > 9 and col > self.start_start +
self.start_length - 1) or
(row > self.height / 2 and col <
self.start_start and col + 0.2 * (

self.height - row) < 8)):
self.racetrack[row][col] = 0

return

def PlotRacetrack(self, racetrack):

plt.figure(figsize=(10, 10))
im = plt.imshow(racetrack, cmap='plasma', vmin=0, vmax=4)
plt.suptitle('RaceTrack')
plt.xlabel('x')
plt.ylabel('y')
labels = ['Out of bounds', 'Track', 'Start', 'Finish', 'Car']
values = [0, 1, 2, 3, 4]
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[i], label=labels[i])

for i in range(len(values))]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2,

borderaxespad=0.)
plt.show()

return

def QLearning(self):

example_episodes = {}

for episode_num in range(self.num_episodes):

episode = self.RunEpisode()

if (episode_num % self.results_interval == 0):
print('Episode: ' + str(episode_num) + '/' + str(

self.num_episodes))
example_episodes[episode_num] = episode

self.PlotExampleEpisodes(example_episodes)
self.PlotPolicy()

11

return

def RunEpisode(self):

episode = Episode()

row = self.height - 1
col = (np.random.randint(self.start_start, self.start_start +

self.start_length))
vel = np.array([1, 0])
bEpisode_over = False

state = (row, col)

while (not bEpisode_over):

episode.states.append(state)

if (np.random.rand() < self.epsilon):
action_num = np.random.randint(self.num_actions)
action = self.actions[action_num]

else:
action_num = np.argmax(

self.state_action_values[state[0], state[1], :])
action = self.actions[action_num]

episode.actions.append(int(action_num))

vel, new_state, reward, bEpisode_over = self.SimulateOneStep(
vel, state, action, bEpisode_over)

self.ApplyQLearningUpdate(
bEpisode_over, state, action_num, new_state, reward)

episode.rewards.append(reward)

state = new_state

return episode

def SimulateOneStep(self, vel, state, action, bEpisode_over):

row = state[0]
col = state[1]

new_vel_y = np.clip(vel[0] + action[0], 0, self.max_velocity)
new_vel_x = np.clip(vel[1] + action[1], 0, self.max_velocity)

if (new_vel_y == 0 and new_vel_x == 0):

12

new_vel_y = 1
new_vel_x = 0

vel[0] = new_vel_y
vel[1] = new_vel_x

new_row = row - vel[0]
new_col = col + vel[1]

reward = self.step_reward

Check for finish line
if (new_row >= 0 and new_row < self.start_length and

new_col >= self.width):
reward = 0
bEpisode_over = True

else:
Check for out of bounds
if(new_row < 0 or new_col < 0 or

self.racetrack[new_row][new_col] == 0):

reward = self.off_track_reward
bInc = False

if(row - 1 >= 0):
if(self.racetrack[row - 1][col] != 0):

new_row = row - 1
new_col = col
bInc = True

if(not bInc):
new_row = row
new_col = col + 1

Check for finish line
if (new_row >= 0 and new_row <

self.start_length and new_col >= self.width):
reward = 0
bEpisode_over = True

return vel, (new_row, new_col), reward, bEpisode_over

def ApplyQLearningUpdate(self, bEpisode_over, state, action,
new_state, reward):

value = self.state_action_values[state[0], state[1], action]

13

if(not bEpisode_over):
new_action = np.argmax(self.state_action_values[

new_state[0], new_state[1], :])
self.state_action_values[

state[0], state[1], action] = value + self.alpha * (
reward + self.gamma * self.state_action_values[

new_state[0], new_state[1],
new_action] - value)

else:
self.state_action_values[

state[0], state[1], action] = value + self.alpha * (
reward - value)

return

def PlotEpisode(self, episode):

trajectory = np.copy(self.racetrack)
for inds in episode.states:

trajectory[inds] = 4

self.PlotRacetrack(trajectory)

return

def PlotExampleEpisodes(self, example_episodes):

fig = plt.figure(figsize=(15, 15))
plt.suptitle('Example Episodes Over Training')

for i in range(example_episodes.__len__()):
episode = example_episodes[i*self.results_interval]
ax = fig.add_subplot(4, 4, 1 + i)
ax.set_title('Episode ' + str(i*self.results_interval) +

' Return: ' + str(np.sum(episode.rewards)))

trajectory = np.copy(self.racetrack)
for inds in episode.states:

trajectory[inds] = 4

im = ax.imshow(trajectory, cmap='plasma', vmin=0, vmax=4)

plt.show()

return

14

def PlotPolicy(self):

policy = np.zeros((self.height, self.width))

for row in range(self.height):
for col in range(self.width):

policy[row, col] = np.argmax(
self.state_action_values[row, col, :])

plt.figure(figsize=(10, 10))
im = plt.imshow(policy, cmap='hot', vmin=0, vmax=8)
plt.suptitle('Learnt Policy')
plt.xlabel('x')
plt.ylabel('y')
labels = []
for i in range(self.actions.__len__()):

labels.append(str(self.actions[i]))
values = [0, 1, 2, 3, 4, 5, 6, 7, 8]
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[i], label=labels[i])

for i in range(len(values))]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2,

borderaxespad=0.)
plt.show()

return

racetrack_game = Racetrack()
racetrack_game.QLearning()

15

16

Episode: 0/1000000
Episode: 62500/1000000
Episode: 125000/1000000
Episode: 187500/1000000
Episode: 250000/1000000
Episode: 312500/1000000
Episode: 375000/1000000
Episode: 437500/1000000
Episode: 500000/1000000
Episode: 562500/1000000
Episode: 625000/1000000
Episode: 687500/1000000
Episode: 750000/1000000
Episode: 812500/1000000
Episode: 875000/1000000
Episode: 937500/1000000

17

18

19

That concludes our coverage of the fundamental solution methods for the RL problem. With
a good understanding of DP, MC and TD methods you are in a great position to tackle some of
the more advanced topics in RL. I hope you can see the similarities and differences between each
of these methods and have started to develop an intuition as to when to use one over another.
In general, TD methods tend to be the most popular of the three because they can be used in an
online fashion, with little computational cost, and only require sampled experience. It is worth
mentioning that the TD methods outlined above are actually ‘one-step, tabular, modelfree’ TD
methods. TD methods can be much more general than this, for example they can:

• Use information from more than one step to perform an update

• Use function approximators to calculate the value function

• Use a model of the environment to perform updates

I hope to cover some these topics in future notebooks, as well as other topics such as policy gradi-
ent methods that search for the optimal policy directly. I hope the notebooks so far have made you
excited about the world of RL and that you will continue to find out more about it! If you have
any questions about what we have covered so far or about RL in general please do not hesitate to
contact me!

20

	Temporal Difference Learning
	Policy Evaluation
	Policy Improvement
	Temporal Difference Control
	SARSA (On-Policy)
	Q-Learning (Off-Policy)

	Example - Racetrack (Sutton and Barto, 1998)

