
DynamicProgramming

September 24, 2018

Dynamic Programming

The first set of methods for solving the RL problem that we will cover are dynamic programming
methods. The two most common methods are called policy iteration and value iteration. The key
property that all dynamic programming methods share is that they require a perfect model of the
environment’s dynamics i.e. they require Pa

ss′ and Ra
ss′ . Unfortunately this limits their applicability

because this is often not the case and we either need to use trial and error experience to gain insight
into the environment’s dynamics or learn an approximation of the environment’s dynamics. With
this being said, dynamic programming methods are often a nice solution method to learn first
because they provide the necessary intuitions to understand how the other methods tackle the RL
problem when we don’t have a perfect model of the environment’s dynamics.

Both policy iteration and value iteration can be viewed as a form of generalized policy iteration
(GPI), as mentioned in the previous notebook. They can therefore be broken down into a policy
evaluation step and a policy improvement step. Lets begin with policy iteration and see how it
tackles the problems of policy evaluation and policy improvement.

1 Policy Iteration

1.1 Policy Evaluation

Remember that for polcy evaluation we want to estimate the value function for a given policy,
that is we want to calculate Vπ. Since we assume that we know Pa

ss′ and Ra
ss′ , policy iteration can

solve this problem simply by turning the bellman equation into a sequential update rule, known
as iterative policy evaluation:

Vk+1(s) = Eπ[rt+1 + γVk(st+1 | st = s]

= ∑
a

π(s, a)∑
s′

Pa
ss′ [R

a
ss′ + γVk(s′)] for all s ∈ S

By definition of the bellman equation, once Vk = Vπ this update rule will not change any of the
values and the iterative procedure will have converged. In general, iterative policy evaluation can
be shown to converge to Vπ as k → ∞. An important property of this update rule is that it per-
forms a ’full backup’ because it takes into account all possible successor states from the state being

1

evaluated. In contrast, a ’sample backup’ would only take into account a single successor state
from the state being evaluated. The backup of iterative policy evaluation can also be described as
a ’shallow’ backup because it only looks one step ahead to make it’s update. This is the opposite
of a ’deep backup’ which may look several states ahead in order to perform its update. Below is
the backup diagram for iterative policy evaluation:

In [30]: from IPython.display import Image

Image(filename='VBackup.png')

Out[30]:

Typically we think of iterative policy evaluation as sweeping through all the states s in the
state space S applying the above update rule to each one. This process is then repeated until the
magnitude of the largest update is below some small value ϵ. The algorithm can be also be run
’in-place’ so that the calculated value for Vk+1(s) is used straight away to overwrite Vk(s), rather
than waiting until the end of a sweep to overwrite all the value. This ’in-place’ version can lead to
faster convergence, however it also means that the order in which you sweep the state space will
have an impact upon convergence speed.

1.2 Policy Improvement

Policy iteration improves the policy by acting greedily with respect to the current value function
Vπ. One way to think about this is that for any given state s we are looking for an action a that
gives us a larger expected return given that we follow π after having taken that action. If there
exists an action that does produce a larger expected return then this defines a new policy π′, which
is better than the previous one π:

Qπ(s, π′(s)) ≥ Vπ(s) for all s ∈ S

Vπ′
(s) ≥ Vπ(s)for all s ∈ S

2

This result is known as the policy improvement theorem and can be proved as follows:

Vπ(s) ≤ Qπ(s, π′(s))
= Eπ′ [rt+1 + γVπ(st+1) | st = s] *
≤ Eπ′ [rt+1 + γQπ(st+1, π′(st+1)) | st = s]
= Eπ′ [rt+1 + γEπ′ [rt+2 + γVπ(st+2)] | st = s]

= Eπ′ [rt+1 + γrt+2 + γ2Vπ(st+2) | st = s] *

≤ Eπ′ [rt+1 + γrt+2 + γ2rt+3 + γ3Vπ(st+3) | st = s] *
.
.
.

≤ Eπ′ [rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + ... | st = s] *

= Vπ′
(s)

I find that following the starred lines tends to make it more obvious why the policy improvement
theorem holds. Hopefully this makes it obvious why acting greedily with respect to the current
value function improves the policy and why it will only stop giving us a better policy when the
original policy is already optimal. The actual update for policy improvement is as follows:

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

E[rt+1 + γVπ(st+1) | st = s, at = a]

= arg max
a ∑

s′
Pa

ss′ [R
a
ss′ + γVπ(s′)]

1.3 Policy Iteration

We can now combine these two components to get the full policy iteration algorithm. As is always
the case with GPI, we just need to alternate between policy evaluation and policy improvement.
We start by initiliasing a random starting policy π and computing Vπ, then we improve π using
Vpi to obtain a new policy π′. This process then repeats so that we get increasingly better policies
and value functions. Usually when we are computing the new value function i.e. Vπ′

, we just
use the old value function i.e. Vπ, as a starting point as this helps with convergence. Below is an
outline of the policy iteration algorithm in full:

In [31]: Image(filename='PolicyIterationPseudocode.png')

Out[31]:

3

2 Value Iteration

The fundamental difference between policy iteration and value iteration is how they alternate
between the policy evaluation and the policy improvement steps. As we have just seen, policy
iteration performs policy evaluation until convergence and then performs policy improvement
until convergence. However it is not a strict requirement that we run each of these steps until
convergence before switching to the other one. We can in fact run as many policy evaluation steps
as we want before switching to policy improvement, which leaves us with a truncated form of
policy iteration.

Value iteration is an extreme case of truncated policy iteration whereby for each sweep over s ∈ S,
one step of policy evaluation is combined with one step of policy improvement. In other words
policy evaluation is stopped after just one sweep of the states. The update rule for value iteration
is as follows:

4

Vk+1(s) = max
a

E[rt+1 + γVk(st+1) | st = s, at = a]

= max
a ∑

s′
Pa

ss′ [R
a
ss′ + γVk(s′)]

Note how this is just the Bellman optimality equation in the form of an update rule! The following
backup diagram for value iteration is therefore exactly the same as the one for V∗:

In [32]: Image(filename='VOptimalBackup.png')

Out[32]:

Since the policy evaluation and policy improvement steps are combined into a single update
rule, the full algorithm for value iteration is relatively simple:

In [33]: Image(filename='ValueIterationPseudocode.png')

Out[33]:

5

As an additional note, we have seen that both policy and value iteration use entire sweeps
through all s ∈ S. If S is large then this can be extremely expensive in terms of computation
time. Interestingly we don’t actually have to sweep through all s ∈ S and instead we can choose
any arbitrary order in which to perform the backups. We could for example back up some states
many times before backing up others. Methods that do this are called asynchronous dynamic
programming methods. The only requirement for convergence is that the values of all states must
be backed up i.e. no states can be fully ignored. One major advantage of asynchronous methods
is that the agent can improve its policy before having to wait for a full sweep of S.

3 Example - Jack’s Car Rental (Sutton and Barto, 1998)

Often the best way to understand an RL solution method is to work through an example, we
shall therefore use dynamic programming to solve the classic ’Jack’s Car Rental’ problem from the
book Reinforcement Learning: An Introduction (Sutton and Barto, 1998). Lets start by outlining
the problem and characterising the components of the MDP that we need to solve. The general
problem is as follows:

• Jack runs a car rental business at two different locations

• Each day customers arrive and rent cars for $10 per car

• Cars are available for rental the day after they are returned by a customer

• To ensure that there are always cars available to rent at each of the locations, Jack can move
up to 5 cars overnight from one location to the other at a cost of $2

• There is a maximum limit of 20 cars per location

• We assume that the rentals and returns follow poisson distributions i.e. P(n) = λn

n! e−λ.
For rentals at location 1 and 2, λ = 3 and 4 respectively, whereas for returns λ = 3 and 2
respectively

6

Using this description we can define the problem as an MDP with the following components:

1. S - The state signal is the number of cars at each location at the end of the day

2. A - The actions are the number of cars moved between each location overnight

3. Pa
ss′ - The transition function is defined by the poisson distributions

4. Ra
ss′ - The reward function is defined by our rental and movement costs

5. γ - We shall set the discount factor to be 0.9

It is also worth noting that our time steps are days i.e. a10 is the number of cars moved by Jack
at the end of day 10. Just from looking at this problem it is not immediately obvious how Jack
should move the cars in order to maximise profit. Fortunately for such a small problem where we
know the environment’s dynamics we can use dynamic programming to do the hard work for us.

The code below creates a class that describes the MDP defined by Jack’s Car Rental problem and
defines the functions needed for policy and value iteration. Some key components of the code are
as follows:

1. init() → Initalises a few key variables and also calculates the probabilities needed to describe
the transition function Pa

ss′ . Pa
ss′ is stored as a tabular representation in rental_probs and

return_probs because our state space is relatively small. Remember that we define Pa
ss′ as

the probability of ending up in state s′ having taken action a in state s. We only calculate
these probabilities up to poisson_upper because for any n > poisson_upper the probability is
neglible for our values of lambda.

2. ExpectedReturn() → Calculates ∑s′ Pa
ss′ [R

a
ss′ + γVk(s′)] i.e. the expected return for taking

action a from state s. After Jack has moved a certain number of cars between locations
(i.e. selected action a in state s) this function iterates through all possible rental and return
scenarios for the next day (i.e. all s′) and uses their probability of occuring to compute the
expected return.

3. PlotPolicy() → Plots a 2D graph that represents the current policy. The y-axis shows the
number of cars at location one and the x-axis shows the number of cars at location two. The
colour represents the number of cars Jack would move from location one to location two
given that number of cars at each location. A negative value corresponds to Jack moving
cars from location 2 to location 1.

4. PlotValueFunction → Plots a 2D graph that represents the current value function estimate.
The axis are the same as PlotPolicy() but this time the colour represents the expected return
from that state.

In [4]: %matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['figure.dpi']= 100

7

class JacksCarRental(object):

def __init__(self):

Gamma (discount factor)

self.discount = .9

S (state space)

self.num_locations = 2

self.max_cars = 20

self.state_values = np.zeros((self.max_cars + 1, self.max_cars + 1))

Pi (policy)

self.policy = np.zeros((self.max_cars + 1, self.max_cars + 1))

R (reward function)

self.rental_reward = 10

self.movement_cost = 2

P (transition function)

self.max_to_move = 5

self.poisson_upper = 10

self.lambda_rentals = np.array([3, 4])

self.lambda_returns = np.array([3, 2])

self.rental_probs = np.zeros((2, self.poisson_upper + 1))

for loc in range(self.num_locations):

for i in range(self.poisson_upper+1):

self.rental_probs[loc, i] = (np.power(self.lambda_rentals[loc], i) /

np.math.factorial(i)) * np.exp(

-self.lambda_rentals[loc])

self.return_probs = np.zeros((2, self.poisson_upper + 1))

for loc in range(self.num_locations):

for i in range(self.poisson_upper+1):

self.return_probs[loc, i] = (np.power(self.lambda_returns[loc], i) /

np.math.factorial(i)) * np.exp(

-self.lambda_returns[loc])

return

def ExpectedReturn(self, num_loc1, num_loc2, action):

expected_return = -self.movement_cost * np.abs(action) # cost of action

number at the start of the day at loc 1

8

morning_loc1 = min(num_loc1 - action, self.max_cars)

number at the start of the day at loc 2

morning_loc2 = min(num_loc2 + action, self.max_cars)

Iterate over all possible rental and return scenarios i.e. all possible s'

for rent_num_loc1 in range(self.poisson_upper+1):

for rent_num_loc2 in range(self.poisson_upper+1):

rent_prob = self.rental_probs[

0, rent_num_loc1] * self.rental_probs[1, rent_num_loc2]

total_rent_loc1 = min(morning_loc1, rent_num_loc1)

total_rent_loc2 = min(morning_loc2, rent_num_loc2)

rewards = (total_rent_loc1 + total_rent_loc2) * self.rental_reward

for return_num_loc1 in range(self.poisson_upper+1):

for return_num_loc2 in range(self.poisson_upper+1):

return_prob = self.return_probs[

0, return_num_loc1] * self.return_probs[

1, return_num_loc2]

evening_loc1 = min(morning_loc1 - total_rent_loc1 +

return_num_loc1, self.max_cars)

evening_loc2 = min(morning_loc2 - total_rent_loc2 +

return_num_loc2, self.max_cars)

Weight outcome by probability and add to expected

return value

expected_return += rent_prob * return_prob * (

rewards + (self.discount * self.state_values[

int(evening_loc1), int(evening_loc2)]))

return expected_return

def PolicyIteration(self):

bPolicy_stable = False

iter = 0

while(not bPolicy_stable):

print("Policy Iteration Step: " + str(iter))

self.PolicyEvaluation()

9

bPolicy_stable = self.PolicyImprovement()

iter += 1

self.PlotPolicy()

self.PlotValueFunction()

return

def PolicyEvaluation(self):

bEvaluation_finished = False

while(not bEvaluation_finished):

theta = .1

diff = 0

for num_loc1 in range(self.max_cars+1):

for num_loc2 in range(self.max_cars+1):

old_value = self.state_values[num_loc1, num_loc2]

action = self.policy[num_loc1, num_loc2]

new_value = self.ExpectedReturn(num_loc1, num_loc2, action)

self.state_values[num_loc1, num_loc2] = new_value

diff = max(diff, np.abs(old_value - new_value))

if(diff < theta):

bEvaluation_finished = True

return

def PolicyImprovement(self):

bPolicy_stable = True

for num_loc1 in range(self.max_cars+1):

for num_loc2 in range(self.max_cars+1):

current_action = self.policy[num_loc1, num_loc2]

action_values = np.zeros(((self.max_to_move * 2) + 1))

for action in range(-self.max_to_move, self.max_to_move + 1):

10

if((action >= 0 and num_loc1 >= action) or

(action < 0 and num_loc2 >= np.abs(action))):

action_values[

action + self.max_to_move] = self.ExpectedReturn(

num_loc1, num_loc2, action)

else:

action_values[action + self.max_to_move] = -9999999

best_action = np.argmax(action_values) - self.max_to_move

self.policy[num_loc1, num_loc2] = best_action

if(current_action != best_action):

bPolicy_stable = False

return bPolicy_stable

def ValueIteration(self):

bPolicy_stable = False

iter = 0

while(not bPolicy_stable):

print('Value Iteration Step: ' + str(iter))

bPolicy_stable = self.ValueIterationUpdate()

iter += 1

self.PlotPolicy()

self.PlotValueFunction()

return

def ValueIterationUpdate(self):

bPolicy_stable = False

theta = .1

diff = 0

for num_loc1 in range(self.max_cars+1):

for num_loc2 in range(self.max_cars+1):

old_value = self.state_values[num_loc1, num_loc2]

action_values = np.zeros(((self.max_to_move * 2) + 1))

11

for action in range(-self.max_to_move, self.max_to_move+1):

if((action >= 0 and num_loc1 >= action) or

(action < 0 and num_loc2 >= np.abs(action))):

action_values[

action + self.max_to_move] = self.ExpectedReturn(

num_loc1, num_loc2, action)

else:

action_values[action + self.max_to_move] = -9999999

self.state_values[num_loc1, num_loc2] = np.amax(action_values)

self.policy[num_loc1, num_loc2] = np.argmax(action_values)

- self.max_to_move

diff = np.amax([diff, np.abs(old_value -

self.state_values[

num_loc1, num_loc2])])

if(diff < theta):

bPolicy_stable = True

return bPolicy_stable

def PlotPolicy(self):

plt.figure()

plt.imshow(self.policy)

plt.colorbar()

plt.suptitle('Learnt Policy')

plt.ylabel('Number of Cars at Location 1')

plt.xlabel('Number of Cars at Location 2')

plt.xticks(np.arange(0, self.max_cars+1, 2))

plt.yticks(np.arange(0, self.max_cars+1, 2))

plt.show()

return

def PlotValueFunction(self):

plt.figure()

plt.imshow(self.state_values)

plt.colorbar()

plt.suptitle('Learnt Value Function')

plt.ylabel('Number of Cars at Location 1')

12

plt.xlabel('Number of Cars at Location 2')

plt.xticks(np.arange(0, self.max_cars+1, 2))

plt.yticks(np.arange(0, self.max_cars+1, 2))

plt.show()

return

def Reset(self):

self.state_values = np.zeros((self.max_cars + 1, self.max_cars + 1))

self.policy = np.zeros((self.max_cars + 1, self.max_cars + 1))

return

With the class defined lets run both policy and value iteration and see what policies they learn.

In [42]: jcr_game = JacksCarRental()

jcr_game.PolicyIteration()

jcr_game.Reset()

jcr_game.ValueIteration()

Policy Iteration Step: 0

Policy Iteration Step: 1

Policy Iteration Step: 2

Policy Iteration Step: 3

Policy Iteration Step: 4

13

14

Value Iteration Step: 0

Value Iteration Step: 1

Value Iteration Step: 2

Value Iteration Step: 3

Value Iteration Step: 4

Value Iteration Step: 5

Value Iteration Step: 6

Value Iteration Step: 7

Value Iteration Step: 8

Value Iteration Step: 9

Value Iteration Step: 10

Value Iteration Step: 11

Value Iteration Step: 12

Value Iteration Step: 13

Value Iteration Step: 14

Value Iteration Step: 15

Value Iteration Step: 16

Value Iteration Step: 17

Value Iteration Step: 18

Value Iteration Step: 19

Value Iteration Step: 20

Value Iteration Step: 21

Value Iteration Step: 22

Value Iteration Step: 23

Value Iteration Step: 24

Value Iteration Step: 25

Value Iteration Step: 26

Value Iteration Step: 27

Value Iteration Step: 28

Value Iteration Step: 29

Value Iteration Step: 30

Value Iteration Step: 31

Value Iteration Step: 32

Value Iteration Step: 33

Value Iteration Step: 34

15

16

Using just a few lines of code we have managed to produce a policy that will allow Jack to
maximise his profit! Hopefully you can see from the policy plots that both algorithms have learnt
sensible policies. For example, when there are many cars at location 1 but few cars at location 2
(bottom left corner of the plots) then it makes sense to move many cars overnight from location 1
to location 2. The plots are not symmetric because both algorithms take into account the different
rates of rentals and returns at each location, as described by their respective poisson distributions.

I hope this simple example of using dynamic programming methods has helped to develop
your understanding of them. The most important thing to remember is that dynamic program-
ming is characterised by the following properties:

1. It requires a perfect model of the evnironment’s dynamics
2. It uses Full backups
3. It is computationally expensive
4. It requires no ’real-world’ experience
5. It ’bootstraps’ information i.e. it estimates the state value using its own estimates of succes-

sor state values

While for simple problems like Jack’s Car Rental these properties are agreeable, there are many
examples of RL problems where this isn’t the case. In particular points 1 and 3 are extremely lim-
iting and so we must turn to other solution methods when they become prohibitive. In the next
notebook we shall look at solution methods that do not require a perfect model of the environ-
ment’s dynamics and that rely on trial and error through ’real-world’ experience to solve the RL
problem.

17

	Policy Iteration
	Policy Evaluation
	Policy Improvement
	Policy Iteration

	Value Iteration
	Example - Jack's Car Rental (Sutton and Barto, 1998)

