
MaximumLikelihood

August 11, 2018

I would argue that maximum likelihood represents one of the most important concepts in
machine learning. When we perform machine learning we typically have three main components:

• A dataset
• A model
• A method for fitting model parameters

In general we make assumptions about all three of these components in order to complete the
task at hand. Maximum likelihood is part of the third component because it allows us to quantify
how well our model parameters fit a given dataset.

The main goal of many machine learning techniques is to find the set of parameters for a given
model that best fits the data. In probability terms, this means finding the set of parameters that is
most probable given the data:

argmax
θ
P (θ | D)

i.e. we want to maximise the posterior distribution. Under Bayes theorem we know that:

P (θ | D) ∝ P (D | θ)P (θ)

posterior ∝ likelihood ∗ prior

When people refer to maximimum likelihood however, they are ignoring the prior over parame-
ters (P (θ)) and just maximising over the likelihood:

argmax
θ
P (D | θ)

As a side note if one maximises over the posterior, taking into account both the likelihood and
the prior, then this is known as the Maximum A Posteriori (MAP) estimate. The inclusion of
the prior is often important because it allows for regularization of the parameters θ. One problem
with performing maximum likelihood estimation alone is that it is prone to overfitting the data.
Unfortunately the discussion of MAP estimates, regularization and fully Bayesian approaches

1

are for another tutorial. For now we shall just focus on maximum likelihood estimation as it is
fundamental to these other extensions.

So we have defined maximum likelihood as maximising the probability of the data given a set
of parameters θ. The exact form of this probability is dependent on the assumptions we make
about our dataset. As a motivating example we shall just consider simple linear regression. When
conducting linear regression we make the following assumptions:

1. i.i.d

The first assumption we make about the data is that it is independent and identically distributed
(i.i.d). This means that the probability of one datapoint is independent from other datapoints and
that all data points are generated from the same probability distribution. This is an extremely
common assumption in classic machine learning apporaches (see Markov Models for exmaples
of when we don’t assume independence between datapoints). Importantly, the independence
assumption allows us to re-write the likelihood as a product of each datapoint:

P (D | θ) =
N∏
i=1

P (di | θ)

where i indexes an individual data point from our dataset. We shall see later that writing the
likelihood as a product will make our life much easier when it comes to calculating it.

2. Zero-Mean Gaussian Noise

The other assumption we make about the data is more specific to linear regression. In the most
common form of linear regression we assume that the target variable ti has been generated by
adding some zero-mean gaussian noise to the actual value yi, which is a function of the input
variables xi and our parameters θ:

ti = y(xi, θ) + εi

ei ∼ N (0, σ2)

The probability of a single target variable value therefore becomes:

P (ti | xi, θ, σ2) = N (ti | y(xi, θ), σ2)

The noise is zero-mean so we can just take the mean of our gaussian to be the determinstic function
we are trying to fit (y(xi, θ) is the ‘most probable value for ti’).

2

The code below plots a graph that shows the zero-mean gaussian noise assumption for the func-
tion y = x. The zero-mean gaussian noise means that the ti has a gaussian probability distribution
centred on the true value yi.

In [2]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib as mpl
mpl.rcParams['figure.dpi']= 100

fig = plt.figure(figsize=(5,5))
plt.plot(np.arange(5), np.arange(5), label='$y = x$')
plt.plot(2,2,'r*', label='y = x = 2')
x_loc = 2
mu = 0
sigma = .5
y = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(mlab.normpdf(y, mu, sigma) + x_loc, y + x_loc,

label='$\mathcal{N}(t \mid 2, 0.5^2)$')
plt.legend(prop={'size': 15}, loc='upper left')
plt.show()

3

Now lets generate some synthetic data that uses these assumptions so that we can calculate
the likelihood later on in this notebook.

In [4]: num_points = 20
sigma = 2.5
theta = np.array([1.5, -5])

X = np.arange(num_points) - 10
y = (theta[0] * X) + theta[1]
t = y + np.random.normal(0, sigma, num_points)

fig = plt.figure(figsize=(5,5))
plt.plot(X, y, 'b', label='True Underlying Function')
plt.plot(X, t, 'r*', label='t')
plt.axis('equal')
plt.legend(loc='upper left')
plt.xlabel('Input Variable (x)')
plt.ylabel('Target Variable (t)')
plt.title('Synthetic Data')
plt.show()

4

If we combine the two aforementioned assumptions together we get the following expression
for the likelihood:

P (t | X, θ, σ2) =
N∏
i=1

N (ti | y(xi, θ), σ2)

X = {x1, ..., xN}

t = {t1, ..., tN}

where X is our entire set of input values and t is our entire set of target values. Fortunately, as you
will see in much of machine learning, gaussian distributions are fairly easy to work with and so
we can simplify this expression down to something more manageable:

argmax
θ
P (D | θ) = argmax

θ
P (t | X, θ, σ2)

= argmax
θ

N∏
i=1

N (ti | y(xi, θ), σ2)

= argmax
θ

N∏
i=1

1√
2πσ2

e−
1

2σ2
(ti−y(xi,θ))2

We can take the logarithm of the likelihood so that we have a sum of values rather than a product.
Often this is called maximising the log-likelihood. Note that taking the logarithm of the likelihood
doesn’t affect which values of θ maximise it.

argmax
θ
P (D | θ) = argmax

θ

N∏
i=1

1√
2πσ2

e−
1

2σ2
(ti−y(xi,θ))2

= argmax
θ

N∑
i=1

ln (
1√
2πσ2

)− 1

2σ2
(ti − y(xi, θ))2

Notice how the first term is indepedent of theta and so doesn’t affect which values of θ maximise
the likelihood. We can therefore just drop this first term because it is a constant.

argmax
θ
P (D | θ) = argmax

θ

N∑
i=1

ln (
1√
2πσ2

)− 1

2σ2
(ti − y(xi, θ))2

= argmax
θ

N∑
i=1

− 1

2σ2
(ti − y(xi, θ))2

Finally by minimising the negative of the above and dropping the last few constants we get the
following final expression for the maximum likelihood:

5

argmax
θ
P (D | θ) = argmax

θ

N∑
i=1

− 1

2σ2
(ti − y(xi, θ))2

= argmin
θ

N∑
i=1

(ti − y(xi, θ))2

If you are already familiar with objective / cost functions in machine learning then you will notice
that the maximum likelihood solution is just the same as minimizing the sum of squared errors
(SSE) between the target variables (ti) and our predictions (y(xi, θ))!

Indeed the majority of the objective functions you learn about in machine learning will involve a
term that is equivalent to the likelihood. This is a very powerful result and it gives you a really
good understanding of why we chose the objective functions we do and what assumptions they
are actually making about the data! It also gives you the necessary tools to devise your own
objective functions in a mathematically sound way using probability theory, taking into account
the specific assumptions you wish to make about your data.

This is just one example of how to obtain an expression for the maximum likelihood solution based
on simple linear regression. Many other machine learning algorithms make different assumptions
about the nature of the data and so the maximum likelihood solution will take on a different
form. I would strongly urge you to see if you can find one of these other exmaples and follow the
reasoning behind it!

Unfortunately, how to actually find the maximum likelihood solution of the linear regression prob-
lem is beyond the scope of this notebook i.e. how to find the minimum of

∑N
i=1(ti−y(xi, θ))2 with

respect to θ. There are many optimization tehcniques out there to solve this problem, from closed
loop solutions (normal equations) to iterative solutions (gradient descent). The key point in this
tutorial is that the likelihood gives us a mathematically sound way of evaluating how good our
parameters are at fitting the data. Other techniques can then use this to find the best fitting pa-
rameters.

Just to reinforce this idea, there is some code below that uses the synthetic data we created above
to calculate the SSE for different values of θ. Notice how as θ approaches the true values of the
linear function used to generate the data, the SSE decreases. The SSE doesn’t reach 0 because a
linear model of this form cannot account for the residual noise in our target variables.

In [7]: print('True Theta Values = Theta_1: ' + str(theta[0]) +
' Theta_2: ' + str(theta[1]) + '\n')

theta_1s = np.arange(0,3,.5)
theta_2s = np.arange(-2,-8,-1)

6

fig = plt.figure(figsize=(5,5))
plt.plot(X, t, 'r*', label='t')

for theta_1, theta_2 in zip(theta_1s, theta_2s):
predictions = theta_1 * X + theta_2
SSE = np.sum((t - predictions)**2)
print('Theta_1: ' + str(theta_1) + ' Theta_2: ' + str(theta_2) +

' SSE: ' + str(SSE))

plt.plot(X, predictions, label= '[' + str(theta_1) + ',' +
str(theta_2) + ']')

plt.legend(loc='lower right')
plt.xlabel('Input Variable (x)')
plt.ylabel('Target Variable (t)')
plt.title('Different Values Of Theta')
plt.show()

True Theta Values = Theta_1: 1.5 Theta_2: -5.0

Theta_1: 0.0 Theta_2: -2 SSE: 1891.30289655
Theta_1: 0.5 Theta_2: -3 SSE: 901.173303124
Theta_1: 1.0 Theta_2: -4 SSE: 306.043709694
Theta_1: 1.5 Theta_2: -5 SSE: 105.914116265
Theta_1: 2.0 Theta_2: -6 SSE: 300.784522835
Theta_1: 2.5 Theta_2: -7 SSE: 890.654929405

7

8

