
TheRLProblem

August 30, 2018

The Reinforcement Learning Problem

In this notebook I hope to introduce you to the basic components of the reinforcement learning
(RL) problem. A good grasp of these components will make the approaches to solving the prob-
lem in later notebooks much easier to understand. We call it the RL problem because RL is best
characterised by the problem it is trying to solve rather than by any specific method or approach.
In general terms, RL is concerned with how an agent interacts with an environment in order to
achieve maximum reward. Importantly, there are three main signals in the RL problem that char-
acterise this interaction between the agent and the environment:

1. st - The state of the environment at any given point in time (st ∈ S)
2. at - The action chosen by the agent given the state of the environment (at ∈ A)
3. rt+1 - The reward recieved by the agent as a result of the state (st), action (at) and subsequent

state of the environment st+1 (rt+1 ∈ <)

Where S and A are the sets of all possible states and actions respectively. How these signals
characterise the interaction between the agent and its environment is often represented graphically
as follows:

In [1]: from IPython.display import Image
Image(filename='RLProblem.png')

Out[1]:

1

From this diagram we can see that the interaction is a constant loop. The agent chooses an
action based on the environmental state, which the environment then responds to by genarating a
new state and an appropriate reward signal. It is this reward signal that provides the agent with
the feedback it needs to evaluate its actions and ultimately make decisions that lead to the most
reward. Indeed, the goal of any reinforcement learning algorithm is to maximise the amount of
reward it obtains. This is often called maximising the expected ‘return’, where the return is some
function Rt of the reward sequence that the agent experiences from time t onwards. An extremely
common way to define the return Rt is to make it equal to the sum of discounted future rewards:

Rt = rt+1 + γrt+2 + γ2rt+3 + ...

=
∞∑
k=0

γkrt+k+1

Where γ is called the ‘discount factor’ and lies between 0 and 1 inclusive (0 ≤ γ ≤ 1). The discount
factor is responsible for controlling how far- or near-sighted the agent is. As γ approaches 1 the
agent will become increasingly far-sighted because it values rewards in the future more and more.
In contrast if γ is set to 0 then the agent will only consider the immediate reward at time t + 1
when choosing actions. It is worth noting that discounting using γ is neccessary for problems that
are not episodic i.e. have no terminal end point. This is because γ ensures that the return at any
given time point t will converge to a finite value as k approaches∞. In episodic problems this is
not an issue because the sum of reward values is finite.

One question that you may have about the environment-agent loop is where exactly does the
boundary between the environment and the agent exist? Commonly the boundary is drawn so
that anything that the agent doesn’t have absolute control over is considered the environment.
For example in a simple robot that has to learn how to move, the motors may be considered part
of the environment because the robot doesn’t have perfect control over them. This illustrates how
the boundary between the agent and the environment doesn’t necessarily have to be a physical
one.

It is often helpful to look at how this RL problem differs from standard supervised learning. Firstly,
the agent may not recieve reward at every time step i.e. the rewards are sparse. This is in contrast to
standard supervised learning where every training example has a label that represents the target
for the machine learning algorithm. In the RL problem an agent may need to choose an action in
order to receive a reward at a later date. Indeed there are often cases in RL where an agent may
need forgo reward in the present in order to achieve larger reward in the future. Secondly, super-
vised learning is genrally concerned with single i.i.d datasets that do not change. In comparison,
in the RL problem the data the agent is recieving is dependent on the agent’s actions and so the
input distribution is dependent on the predictions of the machine learning algorithm.

2

The simple formulation of the RL problem outlined above is extremely flexible and can be applied
to many different scenarios depending on how you choose to define the different signals. One
key assumption of most RL algorithms is that the state signal st follows the Markov property,
which we shall discuss in the next part of this notebook. Critically, the Markov property allows
us to frame the RL problem as a Markov Decision Process, which forms the theoretical basis for
the majority of the solution methods in RL. Therefore a good understanding of this assumption is
essential if you want to represent your problem in a way that allows RL methods to solve it.

Markov Decision Processes

In RL we commonly treat the state at any given time point (st) as a Markov state, which means
that it satisfies the Markov property. If a state satisfies the markov property then the probability
of future states given past and present states only depends on the current state. Another way of
saying this is that future outcomes are only a function of the current state and not of previous
states. Mathematically we can write the Markov property as follows:

P (st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, rt−1, ...) = P (st+1 = s′, rt+1 = r | st, at)

∀s′, r, st, at

That is the probability of the next state being equal to s′ and the next reward being equal to r given
all previous outcomes is equal to the probability of the next state being equal to s′ and the next
reward being equal to r given the current state and action. This basic assumption allows us to
greatly simplfy the RL problem because now the agent only needs to consider it’s current state in
order to select an action. In theory the agent should be able to pick the action that maximises the
expected return without considering everything that has happened before!

Of course there are many real-world problems where the Markov property simply doesn’t hold
and past states do have an impact upon the probability of future states. Many RL algorithms
will perform well even when the states it encounters are not strictly Markov. However the closer
we can get the states to satisfying the Markov property the better the RL algorithm will perform.
Often we can construct the state signal so that it approximates a Markov state. For example, if
you wanted to train an agent to play a video game using RL then it is common practice to provide
the agent with the last four game frames as the state signal. This provides the agent with enough
information to infer what objects are present on the screen, what direction they are moving in and
how fast they are moving. These key variables should provide enough information for the agent to
choose optimal actions, with anything preceeding the four game frames being largely irrelevant.

Now that we have assumed that our states satisfy the Markov property we can frame the RL
problem as a Markov Decision Process (MDP). There are five main components of a MDP, some
of which we have already encountered:

3

1. S - The set of all possible states (st ∈ S)
2. A - The set of all possible actions (at ∈ A)
3. P ass′ - The transition function
4. Rass′ - The reward function
5. γ - The discount factor (0 ≤ γ ≤ 1)

P ass′ is called the transition function and it defines the probability distribution over the next
state given the current state and action. Mathematically we can define this as:

P ass′ = P (st+1 = s′ | st = s, at = a)

Rass′ specifes the expected reward value for transitioning from state s to state s′ via action a. Math-
ematically we can define this as:

Rass′ = E[rt+1 | st = s, at = a, st+1 = s′]

Importantly, P ass′ and Rass′ provide us with all the information we need to describe the dynamics
of the environment and to make decisions that maximise the expected return. Notice how both
P ass′ and Rass′ rely on the Markov property of the state signal, both of these components would be
much more complicated if the Markov property didn’t hold!

It is often useful to work through a simple example of an MDP so that you can see how each of
the components is defined. A classic example, which can be found in the book ‘Reinforcement
Learning: An Introduction’ by Sutton and Barto (1998), is that of a recycling robot. Lets say that
we have a simple robot that can choose from the following actions at discrete points in time:

1. Search for a can to recycle
2. Stay still and wait for someone to bring it a can
3. Return to base to recharge its battery

The robot uses its battery levels (high or low) to decide which action to take. Straight away we
can see that these pieces of information defines our set of state signals S and actions A:

S = {high, low}
A(high) = {search,wait}
A(low) = {search,wait, recharge}

Note how our action set is a function of the current state s, if the robot has a high battery level
then it makes no sense to recharge further. Now that we have S and A defined for our problem
we need to also define the environment’s dynamics with P ass′ and Rass′ . For many RL problems,
P ass′ and Rass′ may be parametric functions but in this simple case we can define them in a tabular
manner as follows:

4

s s′ a Transition Function P ass′ Reward Function Rass′

high high search α Rsearch

high low search 1− α Rsearch

low high search 1− β −3
low low search β Rsearch

high high wait 1 Rwait

high low wait 0 Rwait

low high wait 0 Rwait

low low wait 1 Rwait

low high recharge 1 0
low low recharge 0 0

This table details the values of P ass′ and Rass′ for all possible combinations of s, s′ and a. For
example in the case of P ass′ , if the robot starts off with a high battery level and decides to search
for a can then the robot’s battery level will remain high with probability α or drop to low with
probability 1 − α. In contrast, if the robot has a low battery level and decides to search then
the battery level will remain low with probability β or deplete with propbability 1 − β. For the
other combinations, deciding to wait does not change the battery level and deciding to recharge
increases the battery level from low to high. In the case of Rass′ , choosing to search or wait will
return an expected number of cans, denoted Rsearch and Rwait respectively. The exception occurs
when the robot chooses to search with a low battery and the battery depletes as a result, requiring
someone to rescue and recharge it (s = low, s′ = high, a = search). When this happens the reward
is -3 to represent an unwanted outcome. If the robot decides to recharge then the reward is simply
0 because no cans will be collected.

Hopefully this simple description of a recycling robot and how it can be formulated as an MDP
is useful for cementing what each of the components mean. It is suprising how many problems
can be represented as an MDP with just these simple components. The real power of RL comes
from being able to train agents, such as the recycling robot, to obtain alot of reward over time
i.e. pick up alot of cans without needing to be rescued. In order to do this most RL algorithms rely
on something called a value function, which we shall explore next.

Value Functions

Now that we have covered MDPs we are ready to talk about value functions, which represent one
of the most critical concepts in RL. At the heart of most solution methods in RL you will find some
form of value function. In simple terms, value functions estimate the expected return from a given
state with respect to a particular policy. Policies, commonly denoted π are a mapping from states
to actions and they specify which action an agent will take given the current state:

π : s 7→ a

π may be a detemerministic or stochastic mapping but either way it specifies how the agent acts
in each state. Value functions are dependent on the policy π because the expected return from a
given state will be highly dependent on the action the agent will take in that state and also future

5

states. Typically we can define two different types of value function, either a state-value function
V π(s) or an action-value functionQπ(s, a). A state-value function estimates the expected return of
a given state s, whereas an action-value function estimates the expected return of an action a from
a given state s. Using the discounted sum of future rewards as our return we can define these
value functions as follows:

V π(s) = Eπ[Rt | st = s]

= Eπ[
∞∑
k=0

γkrt+k+1 | st = s]

Qπ(s, a) = Eπ[Rt | st = s, at = a]

= Eπ[
∞∑
k=0

γkrt+k+1 | st = s, at = a]

A key idea in RL is that we can now take these value functions and use the components of an MDP
to show that they satisfy particular recursive relationships. Using the state-value function as an
example, we can now define it as a function of itself using P ass′ and Rass′ :

V π(s) = Eπ[
∞∑
k=0

γkrt+k+1 | st = s]

= Eπ[rt+1 + γ
∞∑
k=0

γkrt+k+2 | st = s]

=
∑
a

π(s, a)
∑
s′

P ass′ [R
a
ss′ + γEπ[

∞∑
k=0

γkrt+k+2 | st+1 = s′]]

=
∑
a

π(s, a)
∑
s′

P ass′ [R
a
ss′ + γV π(s′)]

As you can see, by averaging over the policy and the one-step dynamics of the MDP we can define
the state-value function in terms of itself. In other words, the value of any given state is simply
the reward obtained immediately from that state plus the value (expected return) of the next state,
averaged over the policy and one-step dynamics of the environment. We can equally define a
recursive relationship for the action-value function:

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k+1 | st = s, at = a]

= Eπ[rt+1 + γ
∞∑
k=0

γkrt+k+2 | st = s, at = a]

=
∑
s′

P ass′ [R
a
ss′ + γEπ[

∞∑
k=0

γkrt+k+2 | st+1 = s′]]

=
∑
s′

P ass′ [R
a
ss′ + γ

∑
a′

π(s′, a′)Qπ(s′, a′)]

6

Here the action-value function is defined as the immediate reward given a specific action in the
current state, averaged over the environment dynamics, plus the value of actions in the successor
state, averaged over the environment dynamics and the agents policy.

The following two recursive equations are known as the Bellman equations and form the basis of
many RL solution methods including dyanmic programming and temporal difference learning.

V π(s) =
∑
a

π(s, a)
∑
s′

P ass′ [R
a
ss′ + γV π(s′)]

Qπ(s, a) =
∑
s′

P ass′ [R
a
ss′ + γ

∑
a′

π(s′, a′)Qπ(s′, a′)]

A particularly nice way to visualise what these bellman equations mean is to use ‘back-up’ dia-
grams. Back-up diagrams were first introduced by Sutton and Barto in their seminal book ‘Rein-
forcement Learning: An Introduction’. The diagrams depict states as open circles and actions as
filled in circles. The top of the diagram represents the current state, or state-action pair, and the
nodes extending downwards represent possible outcomes. Below are the back up diagrams for
V π(s) and Qπ(s, a):

In [2]: from IPython.display import Image
Image(filename='RLBellmanBackups.png')

Out[2]:

7

The bellman equation for V π(s) averages over all possible actions in the current state and the
value of the resulting successor states, while Qπ(s, a) averages over the resulting successor states
given a single action followed by the value of all the possible actions in those successor states.
In both cases the bellman equations use ‘one-step lookaheads’ to calculate the value function,
averaging over all possible outcomes according to their probability of occuring.

Optimal Value Functions

So far in this notebook we have outlined the general principles behind the RL problem but what
does it mean to actually solve the RL problem? In general, solving the RL problem equates to
finding a policy π (a mapping from states to actions) that achieves alot of reward over time. An

8

optimal policy, denoted π∗, is one that achieves an expected return that is greater than or equal to
all other policies for all states. If we can find the optimal policy (there may be more than one) then
we can achieve the largest expected return and therefore solve the RL problem.

Remember that value functions are dependent on a particular policy because an agent’s actions
will determine the expected return from a state. We can therefore define an optimal state value
function V ∗(s) or action value functionQ∗(s, a), where the expected return of a state or state-action
pair is dependent on the optimal policy:

V ∗(s) = max
π

V π(s) for all s ∈ S

Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S and a ∈ A(s)

Just as we did with the normal value functions, we can write these optimal value functions as
recursive equations. The recursive equations for the optimal value functions are known as the
Bellman optimality equations. They differ slightly from the normal Bellman equations because
they are written without reference to a specific policy. Instead the Bellman optimality equations
rely on the fact that the value of a state w.r.t the optimal policy is the same as the expected return
for the best action from that state. The Bellman optimality equations for V ∗(s) and Q∗(s, a) are
therefore as follows:

V ∗(s) = max
a∈A(s)

Qπ
∗
(s, a)

= max
a

Eπ∗ [Rt | st = s, at = a]

= max
a

Eπ∗ [
∞∑
k=0

γkrt+k+1 | st = s, at = a]

= max
a

Eπ∗ [rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s, at = a]

= max
a

E[rt+1 + γV ∗(st+1) | st = s, at = a]

= max
a

∑
s′

P ass′ [R
a
ss′ + γV ∗(s′)]

Q∗(s, a) = E[rt+1 + γmax
a′

Q∗(st+1, a
′) | st = s, at = a]

=
∑
s′

P ass′ [R
a
ss′ + γmax

a′
Q∗(s′, a′)]

Again we can use backup diagrams to visualise these equations and to see how the Bellman opti-
mality equations differ from the normal Bellman equations. In these diagrams the arcs represent
taking the max over the possible choices, as opposed to taking the expectation w.r.t some policy.

In [4]: from IPython.display import Image
Image(filename='RLBellmanOptimalityBackups.png')

9

Out[4]:

Importantly, if we can obtain the optimal value function (V ∗ or Q∗(s, a)) for a given MDP then
the optimal policy π∗ is the policy that acts greedily (i.e. chooses the largest value) w.r.t to the
optimal value function. In the case of the optimal state value function, the best action in any given
state is the one that maximises the sum of the immediate reward and the discounted value of the
next state:

π∗(s) = argmax
a

∑
s′

P ass′ [R
a
ss′ + γV ∗(s′)]

This is akin to making a one-step lookahead search and so we just need to act greedily according
to this search. Taking greedy actions works because the optimal state value function takes into

10

account the reward consequences of all possible future behaviours. This is powerful because it
means we don’t need to evaluate lots of future actions in order to make an optimal decision. For
the action-value function, the best action is simply the one that has the largest value from the
current state:

π∗(s) = argmax
a

Q∗(s, a)

In the case of the optimal action value function we don’t even need to perform a one-step looka-
head search. Q∗(s, a) stores the results of all one-step lookahead searches and provides the optimal
expected long-term return as a locally and immediately available value. So by representing the
value function as a function of states and actions, rather than just states, we can choose optimal
actions without having to know anything about the environment’s dynamics! This is an extremely
powerful result and comes up time and time again in RL.

So if we have the optimal value function (particularly the optimal action value function) then we
also have the optimal policy and have solved the RL problem. The question arises then, how do we
find the optimal value function? Indeed it is this exact question that many RL solution methods
aim to answer. We can infact solve for the optimal value function as a series of N nonlinear
equations in N unknowns, where N is the number of states, as long as P ass′ and Rass′ are known.
Unfortunately, this exhaustive search approach is rarely possible due to three main reasons:

1. We often do not know the evironment’s dynamics i.e. P ass′ and Rass′
2. The amount of computational resources required becomes infeasible as N grows
3. The Markov property is often not satisfied

For any given RL problem it is usually the case that one, or a combination, of these problems
arises. We therefore need other methods to solve for the optimal value function. These meth-
ods will form the basis of the next few notebooks, with all of them generally relying on iterative
procedures to find a solution.

I hope this notebook has helped to outline the main components of the RL problem. Half the battle
of understanding RL is getting familiar with the terminology that has been used here. A general
understanding of MDPs and value functions in particular, will stand you in good stead for diving
further into RL. If you have any questions then please do not hesitate to email me!

11

